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Abstract

In the co-channel speaker separation problem, the goai is to recover two separate speech

signals from a monaural c...nnel which contains the sum rf the two speech signals. A new

methodology is developed that if given that a segment of co-channel speech is separated into

a "stronger" and "weaker" segment, the corrxt assignment of these separated segments to

the appropriate talker can be made using a Linear Predictive Coding (LPC) based minimum-

p:ediction residual computation. The uniqueness of the developed technique is that no a

priori information is required of the co-channel speeclh signal. The information needed to

appropriately assigil these sepai ited segments from the co-chann,. speech signal are "clean"

speech that is separate from the co-channel speech signal that are used to compute model LPC

vectors. This "clean" speech is derived from the same channel that the co-.-hannel speech

signal is derived from. This technique has shown the ability to correctly assign the given

"stronger" and "weaker" segmcnts to the appropriate talker at signal-to-signal ratios down

!o equal power levels. The resulting separated speech is clearly understandable, and the

interfe-ing talker's sp-,.,:h signal is effectively eliminated.

x



CO-CHANNEL SPEAKER SEPARATION

I. Introduction

In a communications system, the goal is to transfer information from point A to point B

intelligibly. In the transfer of this information, as it applies to this thesis, the transmitted signal

is a speech signal and it invariably becomes corrupted by noise and/or other interfering speech

signals. Thus, the aim of a communications system designer is to minimize the interference

and maximize the intelligibility of the received speech signal. The focus of this research is

the enhancement of the intelligibility of the received corrupted speech signal.

1 1 Background

A speech signal becomes corrupted by noise and by other speech signals when these

corrupted speech signals simultaneously occupy the same frequency band. Broadcast com-

munications occur at a carrier frequency, and the speech signal is modulated on this carrier

frequency. Another speech signal from a different transmitter at the same carrier frequency

may interfere with the speech signal of interest.

As previously mentioned, several speech signals may occupy the same frequency space

(bandwidth) at the same time. This bandwidth co-occupation may occur unintentionally

via cross-talk in a communications system, or it may occur if the speech signals of interest

were combined (corrupted) before transmission through the communications system. This

corrupted speech signal, regardless of its origin, is referred to as a co-channel speech signal.

The corruption of a speech signal and subsequent co-channel speech signal is evident

in many Air Force applications. Sinals Intelligence (SIGINT) operators may encounter a co-

channel speech signal in normal intercept operations or an air traffic controller could receive

communications from two or more aircraft on the same frequency simultaneously. Land-line
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cable communication links may experience cross-talk interference which would create a co-

channel speech signal. Improper sampling in a time-division multiplexed circuit may also

lead to a co-channel speech signal. For this application, as it applies to this thesis, the origin

of the co-channel signal is not of importance, rather the resulting baseband co-channel speech

signal is analyzed.

1.2 Problem Statement and Scope

A co-channel speech signal contains the desired speech signal, a corrupting speech

signal, and noise. The process by which the desired speech signal is separated from the

corrupting speech signal within a co-channel signal is known as the co-channel speaker

separation problem. The terms signal, speaker, and talker are interchangeable in this thesis.

The term desired signal is synonymous with either desired talker or target speaker, and the

term corrupting signal is synonymous with interfering talker. "Clean" or "clear" speech

denotes a single talker's speech signal that has a high signal-to-noise ratio (SNR).

The co-channel speaker separation problem is defined as the desire to extract the

target speaker from the co-channel signal and make this target speaker more intelligible.

Perfect separation of the target speaker from the corrupting signals in a co-channel interference

situation is virtually impossible, but the post processing is a measure of the success of any

co-channel speaker separation system. The academic co-channel speaker problem involves

only two speakers: the target voice and the interfering voice and the co-channel signal has

a high SNR. A more practical situation of a co-channel signal would include the addition of

significant noise to the speech waveforms. The thrust of the co-channel speaker separation

problem lies in the separation and recovery of these two (or more) vocal tract signals which

are superimposed on a monophonic recording.

This thesis will explore the portion of the co-channel speaker separation problem in-

volved with the assignment of processed speech segments to the appropriate talker. Specific

limitations are outlined below under Assumptions. A given speech segment is processed and

divided into two different parts. These two parts are differentiated by one that includes the

1-2



energy of the detected pitch and harmonics (termed "stronger" segment), and the other in-

cludes the energy of the segment not contained in the pitch frequency and harmonics (termed

"weaker" segment). The focus of this research effort will be the development of a spec-

tral assignment methodology/algorithm based on a linear predictive coding (LPC) distortion

metric.

LPC coefficients are calculated from the separated segment of speech containing the

stronger energy, and a resulting distortion metric is computed with a precalculated set of

model LPC vectors (from both talkers) in order to base a decision rule on the assignment of

the separated segments of speech. The speech used to create the set of precalculated parameters

is independent of the speech in the co-channel signal. This independence is significant because

no a priori knowledge of the co-channel signal is required. The only a priori information

required in this co-channel separation process is "clean" speech from the desired talker or

"clean" speech of both talkers if the recovery of both talkers is desired (or feasible).

Formal intelligibility measurements of the post-processed co-channel speech signals

is not explored in depth in this thesis. Rather, the applicability of the proposed processing

techniques will be explored and their feasibility, usefulness, and limitations will be discussed.

Some measures of intelligibility of speech signals may be found in Parsons (21).

The co-channel speaker separation problem poses difficult signal processing problems.

One problem lies in the non-stationary property of speech signals and another problem is

the lack of unique features in the co-channel speech signal that identifies one talker from

another. The major feature used to separate the two talkers is the pitch of their voiced speech

Assuming a segment of co-channel speech can be separated, the assignment of the segments

to the appropriate talker is difficult.

Co-channel speaker separation has useful applications but the state of the solution to

the co-channel speaker separation problem is still in the feasibility/development stage. This

research effort will attempt to improve the current co-channel speaker separation capabilities

by applying an LPC based distortion metric in the spectral assignment portion of the process.
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1.3 Assumptions

The co-channel speaker separation problem addressed in this thesis is based on the

following ground rules:

* The signals of interest are analog voiced speech at baseband.

* The speech signals are additively combined to make the co-channel signal.

* Noise in the co-channel signal is modelled as additive white Gaussian noise (AWGN)

and the noise is statistically independent of the speech signals.

* An a priori data set of clear speech for each talker is given. This a priori clear speech

set is independent of the speech in the co-channel signal. By independent, the a

priori data set is spoken from the same speaker, but the sentences are different from the

sentence spoken in the co-channel speech signal.

* The co-channel speech signal exists on a monaural channel.

* There are only two separate speakers in the co-channel signal.

e The co-channel signal-to-noise ratio (SNR) is sufficiently large so that the noise inter-

ference is negligible.

1.4 General Approach

The general approach taken in this research is broken down to a four steps. The first

step is to create a speech signal sample set from the TIMIT (2) speech database and from

recorded speech signals (discussed in Appendix A). This step also involves the creation of

the co-channel signal and the "clean" speaker subsets (used for precalculating the model LPC

vectors). In the second step, software algorithms are developed to process the speech signals.

Partial use of the algorithms described by L. Lee and Morgan (11) will be augmented by code

developed as part of this research effort (Chapter III). As a third step, the co-channel speech

signals are processed with varying signal-to-signal ratios (SSRs). The developed techniques

are compared against previous co-channel signal processing methodologies. The results are

analyzed in the final step, and improvements/limitations to the algorithms are discussed.
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1.5 Resources

The resources required for this research include the digitized speech data, processing

software, and a digital computer. These items are all available at AFIT. The speech signals

used in this thesis originate from the TIMIT database or recorded speech signals. Matlab

will be used to implement the co-channel speaker separation algorithm on the Sparc-2 Sun

workstations. Further descriptions of the speech database files and software and hardware

tools used in this thesis are provided in the appendices.

1.6 Organization

This chapter provided a brief description of the co-channel speaker separation problem,

the research objectives, assumptions, resources needed, and the general approach taken in this

thesis effort. Chapter II provides the background information and current aspects of other co-

channel speaker separation techniques which build the foundation for the algorithms developed

in the next chapter. Chapter m] discusses the co-channel speaker separation algorithms

developed in this thesis. In Chapter IV, the results of testing the various co-channel speaker

signals on the developed algorithms will be discussed. Limitations to the algorithms will be

identified, and alternate processing algorithms will be discussed and implemented. The last

chapter provides conclusions and recommendations for further research.
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I. Literature Review

2.1 Overview

This chapter discusses the previous research and methodologies in co-channel speaker

separation. A brief review of the technical issues surrounding a co-channel speech signal are

presented. A historical review of the different methodologies that have been developed will

be presented, culminating with the current state-of-the-art techniques. The chapter concludes

with a synopsis of the techniques employed in this thesis.

2.2 Co-Channel Speaker Separation Technical Issues

Most of the co-channel speech separation algorithms that have been developed have

implemented similar signal processing nodes. The differences between the applications lie in

the approach taken in the particular individual processing steps. A typical co-channel speaker

separation process is illustrated in Figure 2.1.

DESIRED
TALKER 2

INPUTMENT/O SPECTRAL TARGET
CA-CANNL SGMET/ SlERARATtON/ SPEECH

PTCH ITRt E'

Figure 2.1. A Typical Co-Channel Speaker Separation Process

A description of various signal processing techniques that are considered in many

co-channel speaker separation algorithms include portions of the following:
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1. Sampling and digitizing the analog speech waveform (at or above the Nyquist criteria).

2. Segmenting the co-channel signal into small stationary analysis windows. The window

size is selected to be as large as possible while keeping the assumption of the segmented

speech signal as stationary.

3. Determining the pitch and harmonic values in a voiced segment of speech.

4. Filtering, sampling, or digital signal processing the segment of speech in order to

separate the energy of the two talkers, and/or suppressing the unwanted interfering

speech signals.

5. Recovering/synthesizing the desired talker's speech waveform.

6. Using speaker identification techniques, where applicable.

The co-channel speech signal examined in this thesis contains three signals: talker X,

talker Y, and noise. The signal-to-noise ratio (SNR) is a measurement of the signal power of

talker X and talker Y (singularly or combined) to the noise power. A similar measurement

called the signal-to-signal ratio (SSR) is the measure of the signal power of talker X to talker

Y, and likewise the voiced-to-voiced ratio (VVR) is the measure of the signal power of only

the voiced regions of talker X to talker Y (11). In this thesis the SNR and SSR will be used.

The SNR is usually measured from a speech signal if the speech signal has portions that are

silence (noise only). The additive white Gaussian noise (AWGN) power can be calculated

during this silence (noise only). The SNR found by the following equations:

Signal Power Signal Power + Noise Power Noise Power
Total Signal Power Total Signal Power

SNR = Signal Power
Noise Power (2.2)
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Since the two speech waveforms in the co-channel speech signal occupy the same

bandwidth, little or no pre-processing can be done to the co-channel speech signal to separate

the two talkers. The input signal may be low-pass filtered at around 4 kHz (typical of

standard telephone bandwidth) to remove any high frequency noise or speech components.

This low-pass filtering also helps prevent aliasing in digitizing the co-channel signal and

removes unwanted high frequency noise and interfering waveforms. The speech signal is

usually digitized prior to the co-channel processing algorithm. Once the co-channel speech

signal is digitized, it naturally lends itself to discrete time applications and processing. In

digitizing the speech waveform consideration of the Nyquist criteria must be adhered to. Also

employing a digitizer with a high number of quantization levels and ensuring the speech

waveform spans the dynamic range of the quantizer will enable the speech waveform to be

digitized and reconstructed (A/D --. D/A) with minimal distortion.

The next application in co-channel speech processing typically involves segmenting

the digitized speech signal with a window function other than a basic "rect" function. The

windowing function, e.g. Hamming, Hanning, Kaiser, or raised-cosine, is used to segment the

co-channel speech signal into frames. These window functions each have the characteristics

of smooth transitions to zero at the ends, and the heights of the sidelobes are be diminished.

These types of window functions are also employed to provide the frequency response that

has generalized linear phase (19).

A speech signal in, general, is a non-stationary, random process. A random process

is stationary if its statistics do not vary with time. However, some short segments (-', 20-70

msec) in speech can be considered locally stationary, while other similar length segments will

remain non-stationary (21) regardless of the window size. Most speech recognition systems

assume the speech signal is stationary for periods up to 70 msec (21). Assuming a windowed

segment of speech is stationary, linear signal processing techniques can be employed on these

windowed segments.

A segmented speech signal can be classified into three categories: voiced, unvoiced, or

silence. During typical speech, the energy of any talker varies with the utterance being spoken.
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The energy levels of the two talkers vary and cross at irregular intervals between segments

in the co-channel speech signal. The voiced portions of speech have a characteristic periodic

structure and have higher energy than unvoiced or silent segments. Unvoiced portions of

speech have no structure, are noise-like, and have been modeled as AWGN.

Most co-channel speaker separation algorithms use a fixed window size and overlap

adjacent data window frames. For example a segmented window might be 50 msec long and

be stepped by 10 msec. For this example if the sampling rate was 10 kHz the first segment

contains samples 1-500, the second segment would contain samples 101-600, etc. In this

thesis a fixed sample window of 50 msec is used, this window is incremented by 10 msec, and

all segments of speech are assumed stationary. It is acknowledged that this assumption (on the

stationarity of the windowed segment) will not hold during the entire co-channel processing,

especially in segments which are predominately unvoiced, or in transitions between voiced

and unvoiced speech. It is assumed that any processing of unvoiced segments will not be

detrimental to the outcome since the resulting waveform will be characteristically unvoiced

and the perception of the processed speech signal will not be severely degraded.

Once the co-channel signal a been windowed, typically the time-domain signal is

Fourier transformed so the spectral components can be analyzed. The detection of the pitch

in this segment of co-channel speech can be performed. The knowledge of the pitch (and its

harmonics) enables frequency domain signal processing techniques to be used to separate the

energy of the two talkers.

The periodic structure of a voiced portion of speech is related to the "pitch." It is the

determination of the fundamental pitch frequency that has received significant attention in

co-channel speech analysis. Many clever pitch selection, prediction, calculation, and tracking

algorithms have been developed (6). Some of the significant pitch tracking algorithms will be

discussed in the following section.

Linear predicative coding (LPC) techniques have also been used in co-channel speaker

separation algorithms (9, 12). LPC estimates have been used in virtually all phases of co-

channel speaker separation algorithms. LPC estimators have been used in pitch tracking,
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speaker identification, calculation of distortion metrics, and formant prediction. LPC tech-

niques have also been used to synthesize/reconstruct speech.

The previously described techniques can now be used to dissect a separated segment

of co-channel speech. Time domain overlap and add techniques are usually applied to the

windowed and stepped signal. Post-filtering would occur that off-sets any pre-filtering that

might have been used on the input co-channel speech signal.

This section discussed the technical issues concerning the co-channel speaker separation

problem, and some typical signal processing applications. The next section will discuss in

detail the specific co-channel speaker separation techniques that have been developed.

2.3 Co-Channel Speaker Separation Sub-process Techniques

2.3.1 Pitch Detectors. As noted previously, some form of pitch calculation has been

used in most co-channel speaker separation algorithms. The pitch detectors have been used

primarily to ,alculate the pitch of the present segment, plus track relative continuity with the

previously calculated pitch values. The following paragraphs provide a description of some of

the important pitch detection algorithms that have been developed and implemented in solving

the co-channel speaker separation problem.

The maximum likelihood (ML) pitch detection algorithm has been the most widely

used pitch detector (6, 11, 17, 28). The ML pitch detector works on the basis of a likelihood

function for a given segment of speech. That is, the peak of the likelihood function is found

for all values of the pitch in the range of interest. The advantage of the ML algorithm is

that it is relatively immune to noise, can detect non-integer pitch values (by interpolating the

autocorrelation function), and the estimator is based in the autocorrelation domain. This is

significant since the two speakers in the co-channel signal are added in the time domain and

hence are added in the autocorrelation domain. The major drawback of the ML pitch detector

is in the computational burden, since an autocorrelation must be calculated for each segment

for each pitch value in the range of pitch values selected of the co-channel signal (,-, 250

autocorrelation calculations per segment) (28). The range of pitch values usually varies from
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50 Hz - 400 Hz. McAulay examined the ML pitch detection theory and concluded that the

average squared difference function is optimum and robust when the voiced speech waveform

is modeled as quasi-periodic with the periodicity extending over two periods in the segment

of interest (15). McAulay also claimed the ML pitch estimator was roughly equivalent to the

cepstral method and successful in strong noise environments.

L. Lee and Morgan extended the ML pitch detector (described above) to work with the

two speakers in the co-channel signal (11). Their algorithm detects the dominant pitch value

in the segment. This pitch value is used further in their algorithm for the separation of both

talkers.

The modified covariance (MC) pitch detection algorithm is a linear prediction algorithm

which uses a forward and backward prediction to estimate the prediction coefficients (poles)

of a system (8, 11, 13, 17). The MC method is based on minimization with respect to all the

prediction coefficients. The MC method does not guarantee a stable linear prediction filter,

although most of the time it will yield a stable filter. When the MC technique is applied

for spectral estimation this instability condition is not a problem. For the pitch detection

application a high-order predictor is used so the spectral peaks between 50-400 Hz (typical

range of male/female pitch values) can be located. Naylor and Porter tested a MC modified

pitch detector on a -12 dB co-channel signal. Their results were compared with a priori pitch

tracks, and their method was able to estimate the pitch of the two talkers. The only problem

encountered in this test occurred when the pitch tracks of the two talkers crossed, or when the

energy of the target speaker was very low.

The cepstral (homomorphic) pitch detection algorithm begins by windowing a segment

of speech, then a Fourier transform is taken on the segment, and the resulting spectrum's log

magnitude is taken. Then, the inverse Fourier transform is computed, and a peak picking

algorithm detects the pitch above a certain threshold (22). On clean speech, this method

works quite well. Paul showed that the homomorphic pitch detector was prone to error in

the voiced/unvoiced transition regions. Paul compared his homomorphic pitch detector to

one developed by Gold-Rabiner. Paul found that his method and the Gold-Rabiner method
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performed similarly for male speakers, but the homomorphic algorithm made less errors for

female speakers. Paul also examined the performance of the homomorphic algorithm to the

Gold-Rabiner algorithm with speech corrupted by noise. He found that noise degraded the

Gold-Rabiner algorithm more than the homomorphic algorithm. A SNR level of about 10 dB

made the Gold-Rabiner method yield bad "chopped-up" pitch while the homomorphic method

was unaffected at this SNR level.

Dick suggested a method to compute the pitch based on the complex correlation (3).

This method took advantage of the pitch value and several of its harmonics. The complex

correlation is found by taking a Fast Fourier Transform (FFT) of a windowed segment of

speech data, and then taking the magnitude squared. The negative frequency components of

the transform are set to zero, and the square root of the positive frequency components are

computed. The resulting data is inverse fast Fourier transformed and the result is the complex

correlation. The pitch is determined from selecting the peak of this function. This method

was derived for the best fit for the implementation of a comb filter on co-channel speech. Dick

claimed his method was robust against noise and distortion.

Quatieri and Daniesewicz developed a pitch tracking routine that is fundamentally

different from the above techniques (23). Their technique involves tracking both fundamental

frequencies in the co-channel speech signal. One of their primary assumptions was that

the segment of speech was vocalic, and the pitch tracks between segments did not vary

significantly. Given the harmonic assumption of the segment, two fundamental frequencies

can be tracked in time by using calculated estimates on each analysis frame as initial estimates

on subsequent frames. An iterative method of steepest descent is used for updating the pitch

estimates for each frame.

Another pitch tracking algorithm was developed by Min et al (16). This method used

a look-forward and look-backward technique to track the previous pitch values and to predict

the future pitch values. A unique feature of this algorithm was the measurement of the pitch

values for both speakers. This algorithm was in the refinement stage, but Min et al claimed

this technique was useful and effective (no quantifying results provided). They later reported
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that this pitch tracking technique had difficulty computing the pitch during times where the

pitch tracks crossed or during extended periods of silence (1).

Medan et al developed a pitch tracking algorithm that is based on a definition of a local

pitch period interval. The method claims to have a high degree of accuracy (a real number

vice an integer) in calculating the pitch. Two successive frames are compared, and the mean

square error between them is minimized. This minimization is equivalent to minimizing the

cross-correlation between these segments. The technique was tested on sentences with AWGN

added to levels of 10 dB and 3 dB SNR. They claimed their technique performed well in this

test and a graph depicting the pitch tracks illustrated their claim.

Naylor detailed an extensive comparison between four pitch tracking algorithms: ML,

modified cepstrum, harmonic matching, and auditory synchrony model (18). He concluded

that the ML pitch tracking algorithm performed superior to these techniques when used in the

co-channel speaker separation problem. He found that the harmonic matching algorithm was

comparable to the ML algorithm, with the ML algorithm having a slight advantage in terms

of error standard deviation, and the harmonic matching algorithm had an implementation

advantage when used in the harmonic magnitude suppression algorithm (discussed below)

(18). The ML pitch detector has been found to be able to tolerate 12 dB more noise than the

cepstral method (18, 28). The ML pitch detector and the modified covariance pitch detector

were reviewed u, L. Lee and Morgan. They concluded that the ML pitch detector was superior

to the modified covariance algorithm since the ML estimator is an unbiased estimator and the

ML estimator is noise invariant. The ML pitch detector used by L. Lee and Morgan is utilized

in this thesis.

2.3.2 Segment Classification. Some co-channel processing algorithms have em-

ployed segment classification (5, 14, 15, 26, 29). An algorithm developed by Smyth uses

the auto-correlation function of a windowed segment to determine if the segment is voiced

or unvoiced. Another method of classifying speech was discussed by McAulay. McAulay

developed a robust detector that applied statistical decision theory to models of speech and
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background noise to synthesize an optimum (minimum probability) of error classifier. Hanson

and Wong used a voicing detection scheme to replace unvoiced segments with appropnately

scaled AWGN. The Pitch Delay Spectral Recover., (PDSR) algorithm developed by L. Lee

and Morgan claims to be robust enough so no segment classification is necessary (11).

2.3.3 Comb Filtering. Comb filtering techniques have historically shown only lim-

ited success in co-channel separation applications (3, 4, 11). lUck reported that the initial

hope for the comb voice processor was that it would be enough by itself to make intelligible a

secondary voice, which prior to processing had been masked by a primary voice. This turned

out not to be the case. Dick's approach used frequency warping to vary the width of the

peaks and valleys in the comb filter. The probable cause of the failure of this technique is that

there are significant amounts of time, perhaps 20 to 30 percent, when the primary speaker is

not producing sound, but the secondary speaker is. L. Lee and Morgan reviewed the comb

filtering techniques and concluded that further research into these discrete time specially de-

signed adaptive comb filters for co-channel processing was fruitless. The reasoning behind

this conclusion was that while these filters have appropriate frequercy response the phase

response is not linear and their impulse response is too long. This long impulse response

would work well on stationary signals, but breaks down in speech signal processing where

short segments are required.

2.4 Co-Channel Speaker Separation Algorithms

Several complete co-channel processing algorithms have been developed. Historically,

the first attempt to solve the co-channel speaker separation problem was the comb filtering

method developed by Shields in 1970. Frazier e, al in 1975 followed this work with an

algorithm that enhanced co-channei speech by a variable comb filter that passed the desired

talker's pitch and harmonics. Frazier et al claimed the procedure provided enhancement

of speech which was degraded by another speech signal and backgrourd noise (4). They

acknowledged some limitations in their approach. These limitations included problems in
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separating the speech during voiced/unvoiced transitions, determining an optimum impulse

response length, or lack of pitch detection.

Parsons in 1976 developed an algorithm to process co-channel speech by means of

harmonic selection (20). In this approach, the input speech signal must be periodic, which

restricts it to vowels and vowel-like sounds. The basic process was to identify the two talker's

harmonic trains, and create a set of peak tables where the parameters of every peak were

recorded and assigned to either of the two talkers. The reconstructed speech was developed

by using the stored information in the peak iables which belonged to the desired talker. The

results of Parson's efforts were that for vocalic speech the intelligibility varied from fair to

excellent. The intelligibility was noted to be worst when the recovered voice is the weaker

and best when both voices were strong (as expected). Additionally, the recovered speech had

a remarkable naturalness and the voice is recognizable. For non-vocalic speech, the algorithm

was faced with data it was not designed to process. The lack of uniform phonation in the input

unvoiced parts of the co-channel signal did not allow for peak separation (there were no peaks)

or resynthesis of the speech. The results however were remarkably good, and the unwanted

voice was not completely suppressed, but was reduced to a murmur. The intelligibility of the

post-processed speech was fair to good and had poor naturalness, but the target talker's voice

was recognizable.

Dick developed a co-channel speech separation algorithm in 1980 that used adaptive

lattice filtering techniques as a means of suppressing a primary voice (3). His algorithm used

lattice filtering, comb filtering, and LPC analysis. His efforts demonstrated that lattice filtering

was impractical for co-channel speaker separation, and listening tests showed that this method

did not separate the co-channel speakers as hoped.

Hanson and Wong in 1983 developed the Harmonic Magnitude Suppression (HMS)

technique as a solution to the co-channel speech problem (5). They also developed a well-

defined formal subjective intelligibility test procedure to evaluate their results. They claimed

the HMS technique could be implemented in real time with sufficient signal processing

hardware/software. The HMS algorithm was applied to voiced speech segments only. No
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processing was performed on unvoiced segments. They found that the HMS technique

significantly improved intelligibility for SSRs of minus six dB (target speaker to interfering

speaker) or better. L. Lee and Morgan reviewed the HMS algorithm, and noted that this

technique recovered too much of the interfering talker. Additionally, they discussed the type

of windowing function employed could impede the recovery if the pitch was too low and the

harmonic distances are smaller than the frequency response of the Hamming window used.

C. K. Lee and Childers applied multi-signal minimum-cross-entropy spectral analysis

(MCESA) to the co-channel speaker separation problem (10). Their process involves making

an initial estimate of the spectrum of each talker. Once this estimate is made, spectral tailoring

using MCESA is done to refine the initial estimates of the spectrum of each talker. They used

the HMS algorithm to estimate the spectrum of the two talkers. Their results show that an

intelligible estimate of the desired speech was achieved for a male and a female talker with

combined at SSRs down to -18 dB.

In 1987, Naylor published a report on an "Interference Reduction Model" (IRM) (18).

His effort focused on developing techniques for suppressing the interfering (louder) talker

for use in automatic speech or speaker recognition systems. Naylor's baseline system was

based on the HMS algorithm, and processed only segments of speech that were voiced. No

processing was performed on segments that were unvoiced. Naylor discussed a flexible

harmonic placement modification to the HMS algorithm. This modification proved to be

quite useful and allowed for more general placement of the individual harmonic pulses.

Naylor developed an alternative processing algorithm for unvoiced segments. The unvoiced

frames were low-pass filtered at fcutoff- 18 0 0 Hz, and resulted in minimal voiced target

speaker suppression, and considerable unvoiced interference suppression. Another significant

accomplishment by Naylor included the development of a listening test station.

C. Rogers et al developed a co-channel speaker separation process called the automated

two speaker separation system using a neural network (1, 16). Their process was based on

accurate pitch detection and frame size determination, a speech detection scheme, selection

and assigning of spectral components to the appropriate talker, and low-pass filtering. This
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process was unique in that the speech detection process determined if one, or more than one

talker was present in the segment of interest. Here a neural network frame classifier was

used to extract information to determine the number of speakers and their voicing states in

each segment. They implemented two feed-forward multi-layer perceptrons that were trained

by back-propagating errors based on Fourier coefficients. They claimed this neural network

made choices concerning the spectral components for each voice was much closer to those

decisions made by experienced human operators in manual control of the system. Their

results showed that a neural network can make accurate judgements as to the nature (number

of talkers, segment is voiced or unvoiced) of a co-channel speech waveform. This neural

network based information could be used to enhance co-channel separation algorithms over

information derived from rule-based systems.

Stubbs and Summerfield developed two algorithms for co-channel speaker separation in

1988 (27). The first algorithm was a development of Parsons' harmonic selection algorithm,

and the second algorithm operates on the cepstrum of speech. They clearly state that their

algorithms have limited applicability and are not to be construed as complete co-channel sep-

aration algorithm, but they might lend themselves as enhancing speaker separation strategies.

The cepstrum strategy attempts to exploit the fact that the interfering talker is a harmonic

signal (they limited their algorithms to voiced sections), and the interfering talker can be

filtered out in the cepstral domain. The harmonic selection technique used the harmonic

peaks in the frequency domain that constitute a voice and uses this information to reconstruct

the voice. This technique achieves separation of the talkers by exploiting knowledge of the

spectro-temporal characteristics of the target voice.

Zissman et al devised a co-channel speaker separation algorithm which utilized the

voicing states of the target and interfering talker, and applied suppression to selective regions

of the interfering talker depending on the voicing state of the segment (29). Their results

identify the regions in the co-channel speech signal where interference suppression would

prove beneficial. They claimed that in speech segments where the voicing state of the target

talker was anything, and the interfering talker's voicing state was voiced, the post processed
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intelligibility of these segments improved dramatically. Their algorithm may not improve the

intelligibility when the target talker was voiced and the interfering talker had any voicing state.

An alternate co-channel speaker separation algorithm based on a sinusoidal model for

speech was developed by Quatieri and Danisewicz (23). Their approach used these sinusoidal

models for the suppression of the interfering talker. In this technique, as in Naylor's HMS

technique, only voiced segments of speech are considered. The primary distinction between

this technique and previous techniques is that a least-squares estimation of the sine-wave

parameters of both the target and interfering speaker arc calculated. Once these sine-wave

parameters are estimated, a sinusoidal based speech analysis/synthesis system is used to

reconstruct the speech of the desired talker. This technique examines each segment of data and

estimates of the sine-wave amplitudes by performing short-time Fourier transform magnitude

analysis aid peak-picking to determine an estimate of the fundamental frequency. A priori

pitch information provided good separation up to -16 dB SSR. With no a priori data, good

separation was achieved at approximately equal signal levels (0 dB).

Quatieri and Danisewicz's approach operates on the basis that a sinusoidal model for

speech can be obtained for each of the two speech signals in the co-channel signal. A

unique feature in this process is the concept of a time-evolution of the sine wave parameters

between segments during the processing. This time-evolution occurs across frames where the

frequencies of both talkers are closely spaced. The estimates of the sine wave assume the

frequencies are harmonically related

Two approaches were introduced by Quatieri and Danisewicz for talker separation: peak

picking and frequency sampling. The peak picking methodology selects the largest peaks from

the summed spectra and this data is used to reconstruct the larger of the two waveforms. The

waveform estimate is subtracted from the combined waveform to form an estimate of the

lower signal. (This approach is similar to L. Lee and Morgan). A trade-off between the length

of the analysis window and the resolution of the harmonic pIaks was examined. The longer

the analysis window, the narrower the peaks will be and greater separation can be achieved

between the two talkers having close frequencies. The frequency sampling approach assumed
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a priori knowledge of the sine wave parameters of both talkers. The method used to separate

the two talkers begins by parallel processing the spectrum. One path recovers the energy of

one talker from sampling the spectrum at the known frequencies. The other path samples the

spectrum at the frequancies between the known fiequencies, thus recovering the energy of

the other talker. This sampling method is similar to comb filtering techniques. Their analysis

window varied from 20-50 msec. A large portion of their work used a priori knowledge of

the least-squares estimates of the parameters in the sinusoidal models of each talker. Overall,

this approach showed an interesting application to co-channel suppression. However, their

approach is limited to only a small subset of vocalic co-channel signals. It was suggested that

if adequate pitch detection/estimation could be accomplished, their suppression technique is

viable (23).

L. Lee and Morgan developed a co-channel speaker separation algorithm termed the

Pitch Delay Spectral Recovery (PDSR) (11). The PDSR has the goal to separate and reconstruct

both the target and interfering talker. Their co-channel speech signal was comprised from

a male and female talker from th' TIMIT data base. They combined these speech signals

at SSRs of 0, 3, 6, 10, and 20 dB. The ML pitch detection algorithm (28) was also used to

estimate the pitch of the windowed segment of data. This pitch information was input into a

speaker recovery algorithm. The unique feature of this speaker recovery algorithm is that it

used a lag spectral estimate to differentiate between the target and interfering talker. Finally, a

spectral assignment algorithm (using an LPC filter) reassigns/reconstructs the speech segment

for both the target and interfering talker. Their algorithm operated effectively in SSR between

-18 to 18 dB and produced the recovered talkers which are intelligible to human listeners.

The speaker recovery algorithm was the crux of their efforts, and they reported good results in

their experiments. However, as noted in their report, their spectral assignment algorithm was

questionable and perhaps a better assignment algorithm could be devised. This uncertainty in

the assignment of the separated segments of co-channel speech is the motivation behind this

thesis.
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This chapter discussed the issues concerning the co-channel speaker separation algo-
rithm and provided a brief review of the historical efforts that have been developed to help

solve the co-channel speaker separation algorithm. The next chapter introduces the spectral
assignment processing algorithm developed in this thesis.
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III. Spectral Assignment Algorithm Development

In a typical co-channel speech signal, the relative energy of each talker will vary

depending upon the utterance being spoken, and the respective energy levels for talker X may

be higher than talker Y at one instance, and this condition can and often reverses itself in the

co-channel signal. The basic idea in co-channel speaker separation is that if the signal energy

of the two talkers in the co-channel signal can be identified and isolated, both talkers' speech

tracks may be recovered (to a degree). Even if the energies of both talkers could be separated,

an uncertainty still exists when the time comes to properly assign the separated energy to the

appropriate talker. The hypothesis for this thesis is an attempt to solve this uncertainty in the

assignment of the separated energy to the appropriate talker by using an LPC based distortion

metric.

This chapter will discuss the methodology used to separate the energy of the two talkers

and the subsequent assignment of the separated frames to the correct talker. Care should

be taken not to confuse a co-channel speech segment with a separated co-channel speech

segment. The co-channel speech segment contains all the energy, and has two talkers plus

noise. A separated co-channel speech segment (hopefully) contains the energy of one talker

plus some noise. Thus a single co-channel speech segment is processed and split resulting

in two speech segments: one containing the energy of talker X, and the other containing the

energy of talker Y.

Two spectral assignment methodologies are discussed: Pitch Delay Spectral Recovery

(PDSR) (a priori pitch error based) and an LPC based distortion metric. Both of these

aigorithms were implemented using Matlab.

3.1 Spectral Separation Algorithm.

The spectral separation algorithm used in this effort to separate the co-channel speech

signal was developed by L. Lee and Morgan (11). The PDSR algorithm has three parts: the

maximum likelihood (ML) pitch detector, a speaker recovery (spectral separation) algorithm,
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Figure 3.1. PDSR Algorithm

and a frame assignment algorithm. Figure 3.1 shows the basic signal flow used to separate the

two talkers in the PDSR.

In the PDSR algorithm, the process to recover the energies of both talkers begins with

the ML pitch detector. The ML pitch detector calculates the pitch in a segment of co-channel

speech. This pitch value is derived from the stronger talker's energy but it can be associated

with either talker. This pitch value is vital to the spectral separation process.

The next step in the PDSR is to use the calculated pitch value to separate the energy

of the co-channel segment into two parts. These two parts are termed the "stronger" and

"weaker" segments. The PDSR algorithm works on cyclo-stationary signal analysis and the

concept of a lag spectrum. The value of the pitch computed in the ith frame of the co-channel

speech signal is used to determine the amount of lag to create the lag spectrum. The energy in

that "lag" frame will be aligned at the pitch values (and harmonics) of the stronger talker, and

the energy will be added together constructively, while the underlying frequencies not at this

pitch value and harmonics will be added together destructively.

"Thus given the amount of lag to add to the i1h frame of co-channel signal based on the 1th

calculated pitch value, the signal was delayed by this lag factor and added to itself to recover

the stronger talker, and the signal was delayed and subtracted from itself to recover the weaker
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talker. The segment containing the energy from the stronger talker is made by sampling the

lag spectrum at the pitch value and its harmonics. All other spectral components are "thrown

away". The segment for the weaker talker is determined in a similar fashion, except the

spectral components at the pitch and harmonics are "thrown away" and the remaining spectral

samples are kept.

This spectral separation does not completely separate the energies of the two talkers,

but the majority of the co-channel energy is separated. For example, if the pitch in frame i

of talker X was 75 Hz the harmonics would be at 150, 225, 300 Hz, etc. If talker Y's pitch

value was 100 Hz, the harmonics would be 200, 300, 400 Hz, etc. From this example the

spectral components at 300 Hz overlap and these harmonics would not be separated, and

would subsequently be assigned to only one talker. Thus, at the output of the speaker recovery

algorithm, are two segments of speech, one crontaining the stronger talker's energy and the

other containing the energy of the weaker talker (11).

This procedure also has varying degrees of success depending on the voicing states of

talkers X and Y. That is, the voicing states of talker X and talker Y can be any combination

of voiced, unvoiced, or silence, and these co-channel speech segments will vary throughout.

When both talkers in the co-channel speech signal are unvoiced, separating the two unvoiced

speech signals by the PDSR algorithm is virtually impossible. This is because there are no

spectral properties in an unvoiced segment of speech. The two "summed" and "weaker"

separated speech segments will both have spectra that is unvoiced. The only uncertainty

involved in this case would be the relative energy levels of the "stronger" and "weaker"

segments. No adjustment is made in the PDSR to vary the energy level of separated unvoiced

segments of co-channel speech data. When the target talker enters a period of silence, the

unwanted talker's spectral energy can simply be suppressed; however, detecting the silent

portions for only one talker is virtually impossible. When both talkers are silent (trivial case),

no processing is required.

This section discussed how the PDSR algorithm separates a segment of co-channel

speech signal into the "stronger" and "weaker" segments. The next section will introduce the
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two spectral assignment algorithms that will be used in this thesis to assign these separated

segments of co-channel speech to the appropriate talker.

3.2 Spectral Assignment Based on Pitch Values.

Once the energy in a segment of co-channel speech has been separated, the proper

assignment of these separated segments is the next challenge. Two spectral assignment

algorithms were tested in this thesis. Both of these algorithms provide a decision making

device whici' is based on calculated speech signal parameters. The algorithms discussed are:

a priori minimum pitch distance, and an LPC based distortion metric (both a priori and non-a

priori training data). These algorithms follow the PDSR spectral separation process outlined

in Figure 3.1.

The spectral assignment logic used is the PDSR algorithm which uses the individual

"clean" speech signals of both talkers in the co-channel speaker signal to compute their two

individual pitch tracks. The spectral assignment decision logic is based on the minimum

percent deviation of the computed co-channel pitch value to the a priori pitch values from

talker X and talker Y respectively. In the algorithm during the ith frame processed, the co-

channel pitch is calculated and compared to the a priori individual pitch values, and a decision

is made on assignment of the ith separated frame of co-channel speech. The assignment

decision is made on each ith segment of co-channel data (not deferred), and is based on the

minimum value found by the following equation:

Decision: min ([ pitch X,-pitch cochan, pitch Y,-pitch cochan, (
es pitch Xi ' pitch Y} (3.I )

If the original speakers are talker X and talker Y, the individual pitch tracks would be

calculated and assigned as pl (pX) and p2 (pY) respectively. Suppose the co-channel signal

was created and talker X had a +10 dB advantage over talker Y. The co-channel pitch track

is calculated and labeled pC. The input data into the PDSR is the co-channel speech signal,
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Figure 3.2. PDSR Pitch Deviation Frame Assignment Logic

and the previously calculated pitch tracks; p1 (pX), p2 (pY), and pC. During processing in the

PDSR algorithm a window of co-channel speech is divided into two segments labeled "out2",

and "outl1". The "out2" segment contains the "summed/stronger" speech created by sampling

the pitch and harmonic values. At this point, a decision is required on which talker is to be

assigned the out2 and outi segment. The "minimum pitch'decision is based on the minimum

deviation from pC, to p1, and p2,. If the ith frame's minimum deviation was closer to p1, the

"out2" segment would be assigned to til, and by default the "out 1" segment would be assigned

to t2. In the other case, if the jth frame's minimum deviation was closer to p2, the "out2"

segment would be assigned to t2, and the "outl1" segment would be assigned to ti. These

two assignment cases are illustrated in Figure 3.2. Shown in Figure 3.2 are the two decision

choices for the co-channel case when talker P has a SSR advantage over talker 2.
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Thus for each frame of co-channel signal processed, the minimum deviation of the
ith frame co-channel pitch value to the a priori individual Vth pitch values determines the

assignment of the "'stronger" and "weaker" segments. As noted, this methodology requires

the "clean" talker's a priori pitch tracks to properly assign the separated frames of co-channel

speech signal. A methodology that is not based on a priori information would be more

practical and realistic. The following section introduces an assignment methodology that is

not based on any a priori information that is contained in the co-channel speech signal.

3.3 Spectral Assignment from an LPC Based Distortion Metric.

An alternate approach to the pitch deviation assignment algorithm is an assignment

methodology based on an LPC distortion metric. LPC techniques have been used in speaker

identification processes, speech data reduction, and other speech processing applications. In

this thesis, LPC techniques are being employed in a similar fashion as speaker identification.

That is, given the two separated segments of speech can the appropriate speaker be "identified"

from this information and hence have an appropriate assignment of the two separated seg-

ments? This question leads to the quantification of the LPC based distortion metric discussed

in the following sections.

As mentioned, LPCs are frequently used as a distinctive feature in speaker recognition.

In this thesis they are employed to determine the similarity between a test speech signal

and a model speech signal. Several LPC based "distance" measures have appeared in the

literature. Parsons (7, 21) provide a general overview of the Itakura-Saito measure and the

Itakura minimum-prediction residual.

The Itakura minimum-prediction residual is used in this thesis. In computing the

minimum-prediction residual, the autocorrelation function, r, of a segment of the test signal

is first calculated. Additionally, the LPC coefficients of this segment are computed. In this

thesis the LPC coefficients are found by the Levinson-Durbon recursion algorithm (21). From

the autocorrelation function, a Toeplitz matrix, R, is made. A Toeplitz matrix has the property

where all the elements in each diagonal are equal. The Toeplitz matrix is used in the residual
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calculation and will be referred to as the autocorrelation matrix. For a segment of speech the

minimum-prediction residual error, D, is found by computing the 4,tocorrelation matrix R,

and the LPC vector a, as shown in equation 3.2.

D = 6TRa- (3.2)

The prediction error in equation 3.2 has been used as a measure of the difference (or

similarity) between two signals: a test signal and a model signal. The residual can be thought

of in a similar fashion to a "Euclidean distance," where the smaller the distortion the "closer"

the test signal is to the motel signal. The error, D, is calculated between a test LPC vector,

6, and the test signal's autocorrelation matrix, R, and the model LPC vector, b. Itakura (7)

showed that for a test LPC vector d, the test signal's autocorrelation matrix, R, and a model

LPC vector, b, the following relation holds:

brRb
- a_,Rii >1(3.3)

The minimum-prediction residual shown in equation 3.3 is used in this thesis as the

basis for the spectral assignment algorithm developed. This section discussed the minimum-

prediction residual that will be used to assign the separated segments of co-channel signal to

the appropriate talker. The next section will discuss the particular processing used to calculate

D.

3.4 Calculating the Minimum-Prediction Residual

The minimum-prediction residual, D, in equation 3.3 provides a scalar quantity that

measures the "similarity" between a test signal and a model signal. The precomputed model
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parameters are the LPC vectors [1 - a(1) - a(2) - ...- a(p)] where p is the order of the

predictor. The model LPC vector is derived from model speech signals. In this thesis, the

model speech signals are derived from two sources. The first source of model speech is the

same "clean" speech that was used to make the co-channel speech signal. This a priori model

speech will be used as a "proof-of-concept" for the spectral assignment from the LPC based

distortion metric. If this "proof-of-concept" proves fruitful, the second source of model speech

used to precompute the model LPC vectors are derived from the same talkers in the co-channel

signal, except the utterances which are spoken are independent from the co-channel speech

signals. Since the second source of model data is independent of the co-channel speech data,

the resulting co-channel separation processing does not require any a priori information in the

co-channel speech.

The model LPC vectors are computed using the same processing (i.e. normalization,

prefiltering, windowing, and window-stepping, etc.) that was used to process the co-channel

speech signal. During training (i.e. computing the model LPC vectors), for talker X there may

be N precomputed LPC vectors and M LPC vectors for talker Y. Once these LPC vectors are

precomputed, they are stored and used in th! co-channel separation algorithm.

In the PDSR algorithm, the co-channel signal is separated into the "stronger" and

"weaker" segments. The "stronger" segment is used as the test signal. From this "stronger"

segment the autocorrelation matrix R (p X p) and the LPC vector d(O, 1, • - •, p) are computed.

Given the R and d data, the residual, equation 3.3, is computed for each .V and .l stored

LPC model vectors. The minimum value of these N + Al distortion computations is used to

find the decision. Once the minimum-prediction residuals for each N and -l model data sets

are computed, and minimum of these residuals are found, and the "stronger" and "weaker"

segments are assigned to talker X or Y accordingly. This assignment process is illustrated in

Figure 3.3.

Classification of the voicing states was made in the "clean" speech during the precal-

culation of the LPC vectors. A voiced/unvoiced speech detector was implemented br -'ed on

the work by Rabiner and Schafer (25) and Rabiner and Sambur (24). This voiced/unvoiced
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speech detector works on the energy in a speech segment and a threshold value. Rabiner et al.

used a definition of "energy" as being the sum of the magnitudes of the samples in a signal.

The magnitudes of the samples were used instead of the square of the samples since a small

number of samples with a high amplitude will not be emphasized by the summing operation.

The threshold value, T, is computed by taking a percentage of the maximum value of this

energy function minus the noise energy. The procedure to obtain the threshold follows.

Each speech signal in the data base has at least 1000 samples before the actual spoken

speech signal begins. These first 1000 samples can be used to calculate the noise energy. The

noise floor is calculated using equation 3.4:

P-i

: = s•s[k]i (3.4)
k=O
where P = 801 is the number of samples in a frame

Thus or is the noise floor or "silence" energy in the speech signal. The energy per frame

in the speech signal is then computed. For this thesis, a sampling rate of 16 kHz was used,

and the window size was 50 msec, or 800 samples. These frames were stepped by 10 msec

overlapping intervals of 160 samples long. The "energy" value in segment i of the speech

signal is shown in equation 3.5:

P-I

E,[n] = I si[k] (3.5)
k=O

where P = 801 is the number of samples in the ith frame

Equation 3.5 is computed for each i"' frame in the model speech signal. The threshold

value is found by equation 3.6:
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T = z(max (E) - a) - o (3.6)

In equation 3.6, the parameter z drives the threshold value T. In this thesis z was

selected to be 10% of the maximum from the energy function in equation 3.5. Thus, during

the processing of the training speech signal if the energy E, in the ith frame is less than the

threshold T, E£ < T, this frame of model data is disregarded and the next frame is processed.
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3.5 Summary

This chapter discussed the process by which a frame of co-channel signal is separated

into "stronger" and "weaker" energy segments and subsequently assigned to the appropriate

talker. In this thesis, the process by which the co-channel speech signal is separated is

given, and the method by which the separated segments are assigned to the "correct" target

talker is the focus of the research. Two spectral assignment algorithms were discussed, the

PDSR (pitch distance) and the LPC based minimum-prediction residual error. The LPC

based methodology is proposed as an alternate solution of the pitch distance algorithm in the

problem of appropriately assigning the separated co-channel speech signal. The next chapter

will discuss the testing performed on the spectral assignment algorithms presented in this

chapter and discuss the results of the experiments.
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IV Co-Channel Test Signals/Experimentation Results

This chapter discusses the spectral assignment algorithms that were tested against

differing types of co-channel speech signals. The PDSR algorithm discussed in Chapter III

was used to separate the co-channel speech signals into "stronger" and "weaker" speech

segments. The primary focus of this chapter is to evaluate the success of the spectral assignment

algorithms in their assignment of these "stronger" and "weaker" segments to the appropriate

talker. The chapter begins with a discussion of the test speech signals used to make co-channel

speech signals and the computation of the model LPC vectors. Additionally, a description of

the test procedures employed is provided, and the chapter concludes with a discussion of the

test results.

4.1 Co-Channel Test Speech Signal Databases.

The speech data used in this thesis was derived from two sources: the pre-recorded/CD-

ROM TIMIT speech database, and speech signals that were recorded on the Sun Sparc-2

workstation. A description of the TIMIT speech files and the recording hardware/software

are provided in Appendix A. Also provided in Appendix A is a description of the different

digital data formats of the respective speech signals. These two sources of speech signals are

convenient to use and analyze because they both are sampled at 16 kHz and are each 16 bit

linearly quantized. The unprocessed "clean" single talker speech data files are used to make

the test co-channel speech signals and are also used to precompute the sets of model LPC

vectors.

Each speech signal, regardless of the source, was normalized before any processing.

That is, the DC component (mean) was subtracted off, and the resulting signal was normalized

by the standard deviation. The following relation was used to normalize the speech data files:
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Individual Speech File I SNR (dB)

TIMIT/Female 44.9
TIMrT/Male 25.2

Recorded/Talker 1 18.3
Recorded/Talker 2 17.9

Table 4.1. SNR of Individual Speech Signals

Normalized Signal = [Raw Signal - DC (mean)] (4.1)
Standard Deviation

Once the individual input speech signals were normalized, the test co-channel speech

signals were generated at three signal-to-signal ratios (SSR): +5, 0, and -5 dB. The appropriate

gain factor for the SSR was multiplied to the input speech signals and the co-channel speech

signals were made by simple point-by-point addition.

The SNR of the respective individual speech signals was computed using equations 2.1

and 2.2. The speech signals were examined and the power was calculated in the segments that

contained noise only, and in the segments that had signal plus noise. The noise power was

subtracted from the signal plus noise sections leaving the signal power only. The SNR was

easily calculated from the remaining noise only and signal only data. Table 4.1 lists the SNR

values calculated for the individual speech files from the TIMIT database and the recorded

speech files.

The first set of co-channel test speech signals was derived from the TIMIT database.

From the TIMIT speech database two talkers (one sentence each) were arbitrarily chosen.

One male and one female talker was chosen to favorably bias the testing, and the individual

sentences were chosen that had similar (short) lengths. The female talker (fdhcO), spoke the

sentence: You saw them always together those years, (si2189). The male talker (mrgtO), spoke

the sentence: He would not carry a briefcase, (si2080). The talker's initials and sentence
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code numbers shown are provided as a reference to the TIMIT database. These sentences have

no special phonemes or word choice to distinguish them. The shorter sentence was padded

with zeros to make the individual speech signals the same length. The only bias in choosing

these sentences were (a hoped) general male/female talker distinction (pitch values), and short

lengths to speed up the processing.

The other set of test speech signals were recorded in the computer lab using the

Ariel/ProPort A/D converter on the Sun Sparc-2 workstation. No special noise reducing

techniques were used, and this is evident in the differing SNR values listed in Table 4.1. One

advantage to recording the speech signals in the lab was the ability to manually set the record

length, so that both recorded speech signals had the same number of samples.

The recorded speakers are designated talker 1, and talker 2. The following sentences

were spoken: Why were you away a year Roy? (talker 1), and While you were away in Walla

Walla, (talker 2). These sentences are similar to the co-channel test sentences used by Quatieri

(23). These sentences have the distinction of having relatively continuous pitch tracks. The

two talkers were both males and are differentiated by their pitch tracks; talker 2's pitch is

lower than talker l's.

Given these two sets of individual "clean" speech signals, the suite of co-channel test

signals were created. In order to maintain continuity, each individual speech signal was

normalized prior to making the co-channel speech signals. Six co-channel speech signals

(three each from the TIMIT data base and recorded signals) were created with SSRs of +5, 0,

and -5 dB; and they constitute the co-channel test signals analyzed in this thesis.

4.2 Speech Data used to Precompute the Model LPC Vectors.

The spectral assignment algorithm proposed in this thesis and discussed in Section 3.3

requires precomputation of model LPC vectors from model speech data. For each talker in

the TIMIT database there are eight sentences that are suggested for use in speech testing. As

such, with one sentence selected for use in the co-channel signal, that left seven sentences

spoken by the same talker for other speech applications. These extra seven sentences for the
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male and female talkers are used to precompute the model LPC vectors and eventually the

minimum-prediction residual, reference equation 3.3 in Section 3.3.

Additionally, these extra seven TIMIT sentences were arbitrarily chosen to be spoken

and recorded in the lab by talker I (sentences spoken by fdhc0) and talker 2 (sentences spoken

by mrgtO). The 14 sentences used to precompute the model LPC vectors for the TIMIT

speakers and the recorded talkers are:

Female (fdhcO) and talker I:

The misquote was retracted with an apology. (sx 119)

Michael colored the bedroom wall with crayons. (sx209)

This brochure is particularly informative for a prospective buyer. (sx290)

Shaving cream is a popular item on Halloween. (sx299)

They own a big house in the remote countryside. (sx389)

But such cases were, in the past, unusual. (si929)

Visually, these approximated what he was feeling within himself. (si 1559)

Male (mrgtO) and talker 2:

Are your grades higher or lower than Nancy's? (sx 10)

Project development was proceeding too slowly. (sx 100)

Serve the coleslaw after I add the oil. (sx 190)

The oasis was a mirage. (sx280)

That noise problem grows more annoying each day. (sx370)

By that, one feels that magnetic forces are as general as electrical forces. (si820)

Meats: the radiation processing of meat has received extensive investigation. (si 1450)
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The first attempt to compute the model LPC vectors used the entire model speech

signals and processed them through the same normalization, pre-filtering, windowing, and

frame steping that the co-channel signal would experience. Preliminary results from this

methodology did not prove successful.

The problem in this methodology involved the co-channel spectral separation process.

In the co-channel spectral separation process, there exists a large difference in values of the

computed model LPC vectors between the original input signal and the separated "stronger"

segment. The difference in the LPC vector values for each frame of an input signal is shown

in Figure 4.1. The difference in LPC vectors was found by equation 4.2.

Diff. in LPC Vectors = LPC Vectors Calc. by Co-Chan Pre-Processing - (4.2)

LPC Vectors Calc. on "Stronger" Seg

The significant differences in the LPC vectors shown in Figure 4.1 caused severe errors

in the computation of the minimum-prediction residual, and subsequent erroneous assignment

of the "stronger" and "weaker" segments of speech occurred. As a result of the above errors

in appropriately assigning the "stronger" and "weaker" segments, the model LPC vectors

were computed from processing the "clean" speech signals through the co-channel spectral

separation algorithm and using the "stronger" segment to compute the LPC vectors. The

precomputed model LPC vectors were obtained by concatenating the seven sentences together

and processing this signal through the training software. The following procedure was finally

developed and used to precompute the model LPC vectors for each talker in the co-channel

test signals:

1. Concatenate the "clean" model speech signals into one signal.

2. Compute the pitch of each of the "clean" model signals with the maximum-likelihood

(ML) pitch detector.

4-5



coa , 10 Off~i

4-

-2--

Figure 4.1. Difference in LPC Vectors

3. Normalize the signal by subtracting off the mean and dividing by the standard deviation.

4. Pre-filter the model signal with the following transfer function: H(z) = 5/(1 - 0.95z)

5. Segment the model signal using a 6th order Kaiser window, 50 msec long. Step the

frames forward by 10 msec increments.

6. Calculate the energy in each frame. Calculate the noise floor. Calculate the threshold

at 10% of the maximum energy value plus noise floor.

7. Process the model signals through the co-channel separation algorithm.

8. Compute the model LPC vectors from the "stronger" separated segment from the co-

channel processing.
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II Data File Contents
FemaleLPC I Model LPC Vectors from Female's Speech in Co-Channel Signal
MaleLPCI Model LPC Vectors from Male's Speech in Co-Channel Signal

TalkerlLPCl Model LPC Vectors from Talker l's Speech in Co-Channel Signal
Talker2LPCl Model LPC Vectors from Talker2's Speech in Co-Channel Signal
FemaleLPC7 Model LPC Vectors from 7 Female Excluded Sentences
MaleLPC7 Model LPC Vectors from 7 Male Excluded Sentences

TalkerlLPC7 Model LPC Vectors from Recorded 7 Female Excluded Sentences
Talker2LPC7 Model LPC Vectors from Recorded 7 Male Excluded Sentences

Table 4.2. Model LPC Vector Data Files Generated

9. Discard any LPC vector that was calculated in frames where the energy in the frame

fell belo'i,• the threshold value.

10. Store the remaining LPC vectors for each talker.

At the conclusion of precalculating the model LPC vectors, the different sets of model

LPC vectors listed in Table 4.2 were generated.

4.3 Test Procedure.

The test procedure employed in this thesis was to process the six co-channel speech

signals through the one spectral separation algorithm, and then test the success of each spectral

assignment methodologies.

The following test procedure was used in this thesis:

1. Precompute the a priori pitch tracks for all test signals, both model and co-channel

signals.

2. Create the six co-channel test signals.

3. Calculate the model LPC vectors listed in Table 4.2 for each model signal in the co-

channel signals.

4-7



4. Process the co-channel test signals through the co-channel separation algorithm that

uses the "pitch deviation" method for the assignment of the "stronger" and "weaker"

segments. The results of the "pitch deviation" methodology serve as a baseline for

comparison with the other spectral assignment techniques.

5. Process the co-channel test signals through the co-channel separation algorithm that

uses the minimum-prediction residual (using the same speech in the co-channel signal

to precompute the LPC vectors) for the assignment of the separated co-channel speech

segments.

6. Process the co-channel test signals through the co-channel separation algorithm that uses

the minimum-prediction residual (using the seven Independent sentences to precompute

the LPC vectors) for the assignment of the separated co-channel speech segments.

4.4 Test Results.

The following subsections describe the results of the different spectral assignment tech-

niques tested in this thesis. An informal personal listening test will judge the intelligibility of

each post-processed co-channel signal. Graphical results pertaining to the frame assignments

will be developed that will show the effectiveness of the separation methodologies. Spectro-

gram plots of the "clean" and post-processed separated speech signals are also provided in

Appendix B. These spectrogram plots show graphically how well the energies in the separated

co-channel signals were recovered from the input co-channel speech signals. As an example

of the spectrograms, Figures 4.2, 4.3, 4.4, and 4.5 are the spectrogram plots of the four "clean"

individual speaker files used in this thesis.
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Figure 4.2. Spectrogram of "Clean" Female Speech Signal
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Figure 4.3. Spectrogram of "Clean" Male Speech Signal
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Figure 4.5. Spectrogram of "Clean" Talker 2 Speech Signal
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4.4.1 Pitch Deviation Method of Assigning Separated Segments. As a baseline

comparison, the first spectral assignment algorithm examined is the "pitch deviation" algorithm

that was developed and supplied by L. Lee and Morgan (11). Their algorithm was implemented

using Matlab on the Sun Sparc-2 workstation. The "pitch deviation" methodology requires

the two a priori "clean" speech signals (specifically their pitch tracks) that were used to create

the co-channel speech signal.

The first step in the "pitch deviation" methodology is the calculation of the two individual

pitch tracks using the ML pitch detector of the "clean" speech signals. Figure 4.6 shows a

plot of these individual pitch tracks and the time domain signals from the sentences recorded

by talker 1 and talker 2.

You can see from Figure 4.6 that the pitch tracks are continuous during the time the

signal is voiced. The erratic pitch values at the beginning and end of the speech signals are

obtained from the noise portion of the time signals shown in Figure 4.6. Also note that talker

l's pitch track varies from 125-150 Hz, while the talker 2's pitch track varies around 100-125

Hz. There exists an apparent anomaly in talker 2's pitch track around sample 16000. An

expanded graph around this sample point is shown in Figure 4.7. Talker 2's pitch track was

continuous before and after this section, and the time sequence shows definite structure, but

the ML pitch detector failed to calculate an appropriate pitch value for this section of speech.

Further examination of this segment of speech shows that the correct pitch for this segment

should be in the range of 100-110 Hz. Other than this apparent anomaly, the ML pitch detector

appeared to provide accurate pitch detection in subsequent use.
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Figure 4.8. Recorded Co-Channel Pitch Tracks, 0 dB SSR

Next a test co-channel signal was created from talker I and talker 2 at 0 dB SSR, and the

pitch track of this co-channel signal was calculated. A plot of the 0 dB co-channel pitch track,

along with the two individual pitch tracks of talker 1 and talker 2 are provided in Figure 4.8.

As noted in the figure, the computed co-channel pitch track value was usually one of the two

talker's individual pitch tracks. However, the co-channel pitch track did have periods where

the calculated pitch value did not track with either talker's pitch track. These portions of the

co-channel signal were manually examined, and the pitch was determined. The results of

this investigation revealed the ML pitch detector was accurate in its pitch prediction. It just

happened that the time domain addition of these speech tracks resulted in a different pitch

calculation.
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Input Signals Target Post Processed Signals:
SSR Talker lI/Talker 2 Talker I Talker 2

+5 dB Good Marginal
0 dB Good Good
-5 dB Marginal Good

Table 4.3. Listening Test of Recorded Signals through the "Pitch Deviation"

The three test cases of recorded co-channel signals (+5, 0, & -5 dB SSR) for talker 1 and

talker 2 were processed through the spectral separation algorithm and the recovered output

speech signals were obtained using the "pitch deviation" method. Personal listening of the

results of the "pitch deviation" method are shown in Table 4.3. Three levels of intelligibility

for the personal listening test were assigned: good, marginal, and poor. A post-processed

ptech signal was deemed "good" if the target talker was clearly understandable, and the

interfering talker was barely noticeable. A post-processed speech signal marked "marginal"

means the target talker was mostly intelligible, but the interfering talker could also be heard.

A "poor" post-processed speech signal was not intelligible and was worse than the original

co-channel signal.
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Figure 4.9. TIMIT Co-Channel Pitch Tracks, 0 dB SSR

The TIMIT female/male signals were combined to make test co-channel signals at +5,

0, and -5 dB SSR. The individual pitch tracks for both the female and male talkers were

calculated. The co-channel pitch track at 0 dB SSR was also calculated. These three pitch

tracks are shown in Figure 4.9. As shown in Figure 4.9 the co-channel pitch track followed

one of the individual talker's pitch tracks for most of the test signal. Only a small portion

of the graph showed areas where the co-channel pitch value obtained a value that was vastly

different than either the female or male's calculated pitch value.

These three TIMIT test co-channel signals at +5, 0, and -5 dB SSR were processed

through the "pitch deviation" algorithm. The results of a personal listening test is provided

in Table 4.4. These results will be used to compare with the results obtained from the next

section.
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Input Signals Target Post Processed Signals:
SSR Female/Male Female Male

+5 dB Good Marginal
0 dB Good Good
-5 dB Marginal Good

Table 4.4. Listening Test of TIMIT Signals through the "Pitch Deviation"

The "pitch deviation" metjhod assigning the separated segments co-channel data proved

successful. However, a poor or erroneous pitch value (noted in Figures 4.8 and 4.9 will greatly

affect the spectral separation algorithm's ability to separate the two talker's energy-and ulti-

mately degrade the post-processed speech signals. Further investigation in these erroneously

calculated pitch values may be warranted-if the hope is to have better spectral separation.

None the less, since this algorithm is purely academic co-channel speech processing, further

research into algorithms that will yield better pitch distance calculations, is unwarranted.

The listening results provided in Tables 4.3 and 4.4 for the "pitch deviation" method

coincide with the expected results reported by L. Lee and Morgan. These results will be used

as a baseline to compare with the results obtained in the LPC based assignment algorithms

discussed in the following sections. This section provided the results of the "pitch deviation"

method of assigning the separated segments of the co-channel signal. These results are to be

interpreted as a baseline for comparison with the results described in the next sections from

the LPC based distortion method. Spectrogram plots of the resulting separated speech signals

listed in Tables 4.3 and 4.4 are provided in Appendix B.
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4.4.2 LPC Based Distortion Method: A Priori Sentences. This LPC based distor-

tion algorithm uses the minimum-prediction residual distortion metric from equation 3.3 in

order to base the decision rule of assigning the "stronger" and "weaker" separated segments

of speech from the co-channel signal. The distinction for the a priori algorithm in this sec-

tion is the "clean" speech signals that were used to create the co-channel signals are also

used to precompute the model LPC vectors. This methodology was purely implemented as a

proof-of-concept for the LPC based distortion spectral assignment algorithm.

Comparisons are made between this methodology and the "pitch deviation" methodol-

ogy described in Section 4.4.1. The particular differences noted between these two method-

ologies are the decisions made to assign the ith "stronger" and "weaker" segments. No

analysis was done on the separated segments of speech to determine the amount of energy

associated with the particular talker. If this analysis was done, it is probable that the true

decision of the assignment of the separated segments to the appropriate talker could be made.

The absolute measure of the success of the spectral assignment methodologies would be an

extensive listening test-which is not performed in this thesis.

By using the same a priori individual speec, signals as in the co-channel test signals

to precompute the model LPC vectors for the computation of the minimum-prediction resid-

uals, this algorithm should yield the smallest attainable distortion values during the 'rocess.

Figure 4.10 shows the min;,m-nreadiction residual v'a",,q computed for each framc, for both

talkers in the 0 dB SSR TIMIT co-channel signal. The plot is interesting in that it shows a

relatively small residual error was found for each talker, regardless of whether the energy in

the "stronger" frame was from either talker. That is, no large numerical values occurred in

computing the residual between the test signal and the male or female model data.

The three TIMIT test co-channel speech signals were processed through the a priori

LPC based spectral assignment algorithm. Figure 4.11 shows the decision points made by the

a priori LPC residual method and the "pitch deviation" method. From this figure, the a priori

LPC residual assignment decisions closely tracked the "pitch deviation" assignment decisicns
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Figure 4. 10. Minimum-Prediction Residual Values at 0 dB SSR TIMIT Co-Channel Signal

for all SSR's tested. It should be noted that several frames in the beginning and end contain

noise only.
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For the a priori LPC distortion spectral assignment case, the model LPC vectors came

from the same talkers as in the co-channel signal, and an expected linear relationship should

exist between the test frame processed, and the ith model LPC vector used to compute the

minimum distortion. Figure 4.12 shows which precomputed ith LPC vector that was used from

the model database of each talker to provide the minimum-prediction residual for the 5 dB SSR

case (female/male). The graphs in Figure 4.12 show an expected linear relationship between

the co-channel frame tested and the LPC vector used to compute the minimum LPC residual.

The graphs illustrate the LPC residual method is accurately computing the minimum distortion

between the separated test co-channel signal and the model data. This linear relationship is

most notable in the female talker's graph since she had a 5 dB SSR advantage over the male

talker. The male talker's graph also showed a slight linear relation. The slight linear relation

in the male talker's graph is attributed to the fact that even though the male talker was 5 dB

below the female talker, some segments in the co-channel signal had predominant energy that

was attributed to the male talker, and hence some "stronger" segments were assigned to the

male talker. A similar linear relationship exists for the minus 5 dB SSR case.

Figure 4.13 shows which precomputed ith LPC vector that was computed for each talker

to provide the minimum-prediction residual for the 0 dB SSR case. A fair linear relation exists

for both talkers in this case. This fair linear relation is expected since the signal energies are

equal and vary. Additionally, in the training of the LPC vectors, the lower energy frames were

discarded and the absence of these frames provides "holes" in the expected linear relationship.
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Figure 4.12. LPC Vectors Selected in Computing the Minimum-Prediction Residual, TIMIT
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Input Signals Target Post Processed Signals:
SSR Female/Male Female Male

+5 dB Good Marginal
0 dB Good Good
-5 dB Marginal Good

Table 4.5. Listening Test of TIMIT Signals through the A Priori LPC Based Assignment
Algorithm

Personal informal listening tests were performed on the three TIMIT co-channel test

signals. The results are provided in Table 4.5. These results show that the a priori LPC based

asssignment algorithmn provided good recovery for equal power SSR signals and above, these

results are not as good as the "pitch deviation" method, but they confirm the proof-of-concept

for the LPC based residual assignment algorithm is ,uccessful. Spectrogram plots for the

recovered speech signals listed in Table 4.5 are provided it, Appendix B.

Next, the three recorded test co-channel signals were processed by the a priori LPC

residual spectral assignment method. Figure 4.14 shows the assignment selections for the

"pitch deviation" method and the a priori LPC residual method for each co-channel frame

processed. From the graphs shown in Figure 4.14, the LPC residual method tracked very

closely with the "pitch deviation" assignment methodology. Only in a few instances were

frames not as,,igned to the same person for both methodologies.

Figure 4.15 show the linear relationship between the ith LPC vector chosen to compute

thc minimum-residual, and the segment of co-channel speech processed. The linear relation-

ship is very noticeable for Talker 1 (who had a 5 dB advantage), and the linear relationship is

hardly noticeable for talker 2.

Figure 4.16 again shows the expected linear relationship between the iPh model LPC

vector and the segment of co-channel of speech processed, this time for the 0 dB SSR case.

This case shows the least linear relationship, and this is probably caused by the LPC vectors

4-24



that were discarded during the pre-computation, and the fact that the recorded signals had

around a 18 dB SNR.

4-25



Male{f

Female{

PITCH DEVIATION

LPC RESIDUAL +5 dB SSR
0 so 100 IS0 200 250

Male{

Z:

Female ------

0OdB SSR

0 . 100 ISO 200:5

---a ~ -- ---- --- ------- --- ---- -----

Male

Female Ul 4  iI

-5 dB SSR
10 000 ISO 200 20

Frame Number

Figure 4.14. Frame Assignment for +5, 0, & -5 dB SSR (Talker I/Talker 2) Recorded Co-
Channel Signals, A Priori LPC Based Method
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Input Signals Target Post Processed Signals:
SSR Talker l/Talker 2 Talker 1 Talker 2

+5 dB Good Marginal
0 dB Good Good
-5 dB Marginal Good

Table 4.6. Listening Test of Recorded Signals through the A Priori LPC Based Assignment
Algorithm

The results of personal listening to the three post-processed recorded test co-channel

speech signals are provided in Table 4.6. As indicated in Table 4.6, the talker 1 and talker 2

co-channel speech signals were separated nearly as well as the TIMIT test co-channel signals.

Spectrogram plots are provided in Appendix B of the recorded recovered talkers listed in

Table 4.6.

In examining this proof-of-concept test, the results have shown good success for the LPC

baseJ assignment methodology against the suite of test co-channel speech signals considered.

Since the TIMIT speech signals enjoyed about a 15 dB SNR advantage over the recorded

speech signals. as noted, these signals were separated better than the recorded signals, and

the informal listening test confirmed the separated TIMIT co-channel signals sounded better.

Because the proof-of-concept methodology was successful, the next test case is investigated

where the model LPC vectors are computed from model speech signals. This "excluded

sentences" LPC based spectral assignment methodology is discussed in the next section.

4.4.3 LPC Based Distortion Method: Excluded Sentences. In the "excluded sen-

tences" LPC based distortion spectral assignment methodology, the speech signals that were

used to pre-compute the model LPC vectors came from speech that was not part of the co-

channel speech. Thus the minimum-prediction residual (equation 3.3) is computed between

the "stronger" segment of separated co-channel speech and model LPC vectors that were

calculated from model sentences that were not part of the co-channel signal, but from the same

talkers in the co-channel signal.

4-29



Input Signals Target Post Processed Signals:
SSR Talker lfTalker 2 Talker I Talker 2

+5 dB Good Poor
0 dB Marginal Marginal
-5 dB Poor Good

Table 4.7. Listening Test of Recorded Signals through the LPC Based Assignment Algorithm

Figure 4.17 shows the frame assignment decisions for the three test recorded co-channel

signals. The plots shown in Figure 4.17 show the "excluded sentences" spectral assignment

methodology made nearly the same decisions as the "pitch deviation" methodology for the

plus 5 dB SSR case, and many of the same assignment decisions for the - 5dB and 0 dB SSR

cases.

The results of personal listening to the post-processed recorded test co-channel speech

signals are provided in Table 4.7.

Next, the three TIMIT test co-channel speech signals were processed by the "excluded

sentences" LPC based spectral assignment methodology.

Figure 4.18 shows the frame assignment decisions for the three test TIMIT co-channel

signals. The plots shown in Figure 4.18 show the "excluded sentences" spectral assignment

methodology made nearly the same decisions as the "pitch deviation" methodology for the

plus 5 dB SSR case, and many of the same assignment decisions for the - 5dB and 0 dB SSR

cases.

The personal listening test results are provided in Table 4.8. These results show good

recovery of both talkers at SSR levels above 0 dB. The recovered speech from the "excluded"

entences" LPC based assignment algorithm was clearly understandable, and the background

talkers voice was reduced to a low murmor.
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Input Signals Target Post Processed Signals:
SSR Female/Male Female Male

+5 dB Good Poor
0 dB Marginal Marginal
-5 dB Poor Good

Table 4.8. Listening Test of TIMIT Signals through the LPC Based Assignment Algorithm
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Figure 4.17. Frame Assignment for +5, 0, & -5 dB SSR (Talker I/Talker 2) Recorded Co-
Channel Signals, "Excluded Sentences" LPC Based Method
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Target Talker's SSR A Priori "Pitch Deviation" A Priori LPC "Excluded Sentences" LPC
+5 dB Good Good Good
0 dB Good Good Marginal
-5 dB Marginal Marginal Poor

Table 4.9. Summary of Listening Tests

4.5 Summary of Spectral Assignment Methodologies.

Three spectral assignment methodologies were investigated: the "pitch deviation",

and the minimum-prediction residual (a priori sentences and "excluded sentences"). Each

methodology separated and recovered the target talkers in the test cases of co-channel speech.

The significance of the "excluded sentence" spectral assignment methodology was the fact

that the sentences used to compute the model LPC vectors was independent of the speech in

the co-channel signal. The importance of this technique is that if the operator of the co-channel

separation processing algorithm can obtain "clean" speech from the target talkers, then this

methodology can be used when the target talkers are interfered by another interfering speech

signal. Thus no a priori information about the co-channel signal is needed to extract the target

talker(s). The a priori pitch deviation assignment algorithm performed the best since the ML

pitch detector is robust in noise, and this had the advantage of a priori information.

Table 4.9 provides a summary of the informal listening test against the target co-

channel test signals processed by the three spectral assignment methodologies. The SSR

column represents the dB value of the target talker in the co-channel speech signal.
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V Conclusions and Recommendations

This chapter provides a summary of this thesis effort, and suggests areas of further

research into the co-channel speaker separation problem.

5.1 Condusions.

The co-channel speaker separation problem remains a challenging task for signal pro-

cessing applications. The inherent non-stationary properties of speech, the limited bandwidth

occupation, the varying energy levels, and inherent large computational requirements, each

contribute to the complexity of the co-channel speaker separation problem.

The LPC based distortion assignment algorithm developed in this thesis is an important

processing technique that can help solve the co-channel speaker separation problem. The

experiments in this thesis showed that the methodology, when placed in conjunction with the

spectral energy separation algorithm provided by L. Lee and Morgan (11) provided a viable

alternative processing technique to their a priori pitch based assignment algorithm. If the LPC

based distortion assignment algorithm resulted in separating the co-channel signal perfectly,

the processing burden is still severe.

The "excluded sentences" LPC based assignment algorithm performed nearly as well

as the a priori pitch deviation algorithm. The "excluded sentences" algorithm could only

accurately assign the separated co-channel speech segment at SSR levels greater than zero dB.

5.2 Recommendations.

The following items are suggested areas for future research and development in support

of the co-channel speaker separation problem.

1. An area of further research is the system described by Naylor and Porter (17). Their

co-channel separation technique was unique in that it did not require any a priori

information.

5-1



2. Use clustering routines to further reduce the amount of pre-computed model LPC

vectors.

3. Determine if there is an "optimum" amount of pre-computed model LPC vectors. Is

there a finite amount of phonemes, for a given talker or language, that would make the

pre-computed set of model LPC vectors complete?

4. Determine the usefulness of the co-channel separation processing to a speaker identi-

fication process. Given the co-channel separation processing algorithm discussed in

this thesis, investigate whether current speaker identification techniques can accurately

determine who the post-processed (separated) co-channel speakers are.

5. Investigation into other spectral distortion metrics. Is there a distortion metric other than

the minimum-prediction residual that might be applied to the assignment of separated

co-channel speech?

6. The LPC based distortion metric is inherently not robust to noise, and maybe some

noise-reducing techniques could be applied to the co-channel signal prior to attempting

co-channel separation.

7. Developing an adaptive window size and window stepping scheme for the co-channel

processing algorithm. A larger window size will allow more time-domain data and

hence better frequency domain analysis. A larger window step size would speed up

the overall processing. The varying window size must not exceed the requirements for

stationary of the frame considered.

8. Although Matlab is an excellent signal processing tool, the severe computational re-

quirements of any co-channel speaker separation algorithm would require programming

in C, or possible implementation in hardware to approach real-time processing. The

approximate time to fully pre-compute the parameters and process a short sentence of

co-channel speech requires several hours (2-3) processing in Matlab on a Sun Sparc2

workstation.
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Appendix A. Data Conversion and Software Programs

This thesis effort requires the processing of information using a digital computer.

Specifically, a Sun Sparc-2 workstation was used in conjunction with the following com-

mercial/public domain software programs, self-generated software programs, and speech data

files:

I. Matlab, by The MathWorks, Inc. is a high-performance interactive software pack-

age for scientific and engineering numeric computation, used in the co-channel signal

processing algorithms.

2. Ariel S-32C Digital Signal Processor, and ProPort A/D and D/A converter and support-

ing record/playback utility software.

3. Entropic Signal Processing System (ESPS), version 4. 1, by Entropic Research Labo-

ratory, Inc. is a suite of programs for creating, manipulating, and analyzing digital

signals.

4. waves+, version 2.0, by Entropic Research Laboratory, Inc. is an interactive graphics

interface used to display the ESPS data signals and files.

5. TIMIT Data Files, a standard speech data set from the Defense Advanced Research

Projects Agency (DARPA), sampled at 16 kHz, 16 bits/sample, linearly quantized.

6. SOund eXchange (SOX) A program called SOX (SOund eXchange) was used in con-

verting the binary data files between the specific formats. SOX is a public domain

software package.

A. I Speech Data Files: Format and Description

The speech data files used in this research effort originate from two sources. The first

source is the TIMIT speech files, and the other source is self-generated speech data files,

generated directly from the Sparc-2 workstation using the Ariel S-32C DSP/ProPort A-D
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converter. Fortunately for standardization and file conversion, both of these speech data file

types are at a 16 kHz sampling rate and line r quantization.

The TIMIT speech data files are used to artificially create various co-channel speech

signals analyzed in this thesis. The complete TIMIT acoustic-phonetic speech data base was

designed to provide speech data for the acquisition of acoustic-phonetic knowledge and for the

development and evaluation of automatic speech recognition systems. The data was prepared

at the National Institute of Standards and Technology (NIST), with sponsorship from the

Defense Advanced Research Projects Agency - Information Science and Technology Office

(DARPA-ISTO). The individuals who spoke the sentences -n the TIMIT data base come from

varying ethnic backgrounds, education level, ages, and geograp'. c location. The TIMIT data

base includes 168 speakers, each speaker recording 10 sentences. Eight of these ten sentences

are suggested to be used for test/training purposes, while two sentences from each talker are

sample sets. A male talker and a female talker were selected arbitrarily to form the co-chanr--i

signal, and the training codebook.

The Ariel/ProPort AID and D/A converter was used to record sample speech data files,

and was used to playback the co-channel s',eech ;ignals (before and after processing). The

data format for the recording of speech signals was set to 16 kHz and 16 bits/sample linear

quantization, in the standard SLi, audio binary format.

A. 2 Soiftware Description

The two speech data file formats, and the Matlab co-channel processing code neces-

sitated the data format conversion between these different platforms. A program called sox

(SOund eXchange - universal sound sample transla,'-r) and some self generated C routines

were used to convert between the speech data formats and MatLab data formats and vice-

versa. Additional routines contained in the ESPS package enabl , the conversion to and from

a Matlab binary file to an ESPS feature file or generation of spectrogram files.
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A.3 Data Conversion

The TIMIT data files required the conversion between the CDROM (*.wav) binary data

format to the (*.mat) binary format. Several conversion routines were included in th- TIMIT

CDROM for use in converting the binary speech files. A unix script file called "wav2mat" was

implemented that converted the (*.wav) to *.mat). The program begins by reading the (*.wav)

file header is read by a TIMIT utility program called h-read, and the number of samples in

the speech file is obtained. Another TIMIT utility program called h-strip, strips off the binary

(*.wav) file header, leaving a (*.raw) binary file. This (*.raw) binary file is then converted

using the SOX utility program, where the (*.raw) data format is binary short words that have

the most significant bit and least significant bit reversed. The SOX program is first used to

reverse the data bits. Then C program is run that converts the (*.raw) binary file to a (*.mat)

file.

To create a spectrogram plot, an encapsulated postscript .eps file from a Matlab .mat

speech file, a Matlab/Unix script file called "creatfspec.m" was created. The following is file

that contains the commands necessary to convert a Matlab speech file to a spectrogram plot.

Basically, the program scales the speech file to the whole dynamic range of the D/A converter,

and subtracts off the DC component. A file "testl.mat" is created, with the speech data saved

under the variable testl. The Unix script file, "mat2fspec" is then executed that converts the

test l.mat file to a testl.fspec spectrogram file. The script file then plots the spectrogram file

to the screen, and the "xgrabsc" ESPS command is used to grab the spectrogram file and save

the result in an encapsulated postscript file testl.eps.
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%file: creatfspec.m
function factor~ampplay (sig)
amp=max(sig);
factor=(2^15-1J lamp;
testl=factor~sig;
test 1=testl-mean(testl);
[row column] =size(testi),
if row == 1,

end;
disp('You have achieved a scanding vector!')
save testl.mat testi
!mat2fspec testi .mat
end;
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Appendix B. Spectrogram Plots

This Appendix provides spectrogram plots of the processed speech signals. The dark

bands within the spectrogram plots are the formant lines for the individual talker's recov-

eied speech signal. These spectrogram plots are to be compared with the "clean" talker's

spectrogram plots shown in Chapter IV
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Figure B.30. Talker 2. A Priori LPC Method, -5 dB, t2tcl I m5
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Figure B.33. Talker 2, "Excluded Sentences", LPC Method, -5 dB, t2tcl7m5
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